

#### 2009 NIST Language Recognition Evaluation Evaluation Overview

Craig Greenberg
Alvin Martin

Based on the NIST presentation at:

LRE09 Workshop Baltimore, Maryland, USA June 24-25, 2009



- Evaluation Overview
- Participants
- Overall Evaluation Results
- Performance History
- Performance by Language
- Performance by Data Type
- Summary

#### What's New For LRE09?

- Primary (new) data is broadcast telephone bandwidth Voice of America (VOA) data
  - Early analysis of VOA data done at Brno
  - Collected and audited by the LDC
  - Large VOA corpora and designated segments made available for development in languages for which previous LRE conversational telephone speech (CTS) data not available
- 23 target languages, 16 out-of-set languages
- Larger numbers of test segments available for most languages
- Segments of approximately 3, 10, or 30 seconds of speech all grouped together (but performance examined separately)
  - Careful listening to 10 and 3 second CTS segments
  - Found overlapping 10 and 3 second CTS speech segments that minimized time elapsed
  - Selected 10 and 3 second VOA by iterating over each sample and:
    - Let Eavg\_i be the average energy in candidate segment seg\_i
    - Let Emax be the maximum of Eavg\_i over all seg\_i
    - Let score\_i be the score for segment seg\_i, with score\_i = max(Ew1, Ew2, .05\*Emax)/Eavg\_i
    - Chose the seg\_i that minimizes score\_i.
  - Feather-cut voa segments using 10ms linear ramp

### **LRE09 Languages**

#### (counts are for 30-second segments)

| Lang.          | VOA Train | VOA Test | CTS Test |
|----------------|-----------|----------|----------|
| Amharic        | 171       | 398      |          |
| Bosnian        | 194       | 355      |          |
| Cantonese      |           | 62       | 316      |
| Creole-Haitian | 186       | 323      |          |
| Croatian       | 181       | 376      |          |
| Dari           | 194       | 389      |          |
| English-Am.    |           | 374      | 522      |
| English-Ind.   |           |          | 574      |
| Farsi          |           | 338      | 52       |
| French         | 196       | 395      |          |
| Georgian       | 142       | 399      |          |
| Hausa          | 200       | 389      |          |
| Hindi          |           | 397      | 270      |
| Korean         |           | 318      | 145      |
| Mandarin       |           | 390      | 625      |
| Pashto         | 197       | 395      |          |
| Portuguese     | 166       | 397      |          |
| Russian        |           | 254      | 257      |
| Spanish        |           | 385      |          |

| Lang.        | VOA Train  | VOA Test | CTS Test |
|--------------|------------|----------|----------|
| Turkish      | 194        | 394      |          |
| Ukrainian    | 194        | 388      |          |
| Urdu         |            | 347      | 32       |
| Vietnamese   |            | 27       | 288      |
| Arabic       | Out-of-set | 187      |          |
| Azerbaijani  | Out-of-set | 366      |          |
| Belorussian  | Out-of-set | 363      |          |
| Bengali      | Out-of-set |          | 43       |
| Bulgarian    | Out-of-set | 375      |          |
| Italian      | Out-of-set |          | 30       |
| Japanese     | Out-of-set |          | 180      |
| Punjabi      | Out-of-set |          | 9        |
| Romanian     | Out-of-set | 400      |          |
| Shanghai-Wu  | Out-of-set |          | 69       |
| Southern-min | Out-of-set |          | 48       |
| Swahili      | Out-of-set | 396      |          |
| Tagalog      | Out-of-set |          | 84       |
| Thai         | Out-of-set |          | 188      |
| Tibetan      | Out-of-set | 368      |          |
| Uzbek        | Out-of-set | 382      |          |

#### **Test Conditions**

- Closed-set: segment languages are limited to inset languages, all (in-set) target languages
- Open-set: segment languages also include (undisclosed) out-of-set languages
- Language pairs: Segment and target languages limited to two, for each possible in-set pair
  - Thus always a single alternative hypothesis for each trial
  - Certain pairs designated as of particular interest

| Cantonese Mandarin | Hindi Urdu                       |
|--------------------|----------------------------------|
| Portuguese Spanish | Farsi Dari                       |
| Creole French      | Bosnian Croatian                 |
| Russian Ukrainian  | Engl. (American) – Eng. (Indian) |



### System Input/Output

- Input: all trials for a test condition, consisting of all pairings of a test segment and a target language/dialect
- Output: for each trial
  - a decision (true/false)
  - a score on which the decision is based, where higher scores imply greater belief that "true" is the correct decision
    - Systems were asked to specify if their scores could be interpreted as log-likelihood ratios (Ilr's):
      - = In P(data | target language i) –In P(data | not target language i)

where In is the natural logarithm function

#### **Evaluation Rules**

- All 41793 test segments of all durations must be processed for each target language
- Each test segment must be processed separately and without any knowledge of other test segments.
  - Normalization over multiple test segments is <u>NOT</u> allowed.
- Side knowledge of the sex or other characteristics of the test speaker is <u>NOT</u> allowed.
  - Unless obtained by automatic means.
- Listening to the evaluation data or any other experimental interaction with the data is <u>NOT</u> allowed before all test results have been submitted.
- Use of knowledge of the full set of target languages/dialects for each test <u>IS</u> allowed.

#### **Basic Performance Measure**

$$C(L_T, L_N) = C_{\text{Miss}} \cdot P_{\text{Target}} \cdot P_{\text{Miss}}(L_T) + C_{\text{FA}} \cdot (1 - P_{\text{Target}}) \cdot P_{\text{FA}}(L_T, L_N)$$

#### where

 $L_T$  and  $L_N$  are a target/non-target language pair  $C_{Miss}$ ,  $C_{FA}$  and  $P_{Target}$  are application model parameters

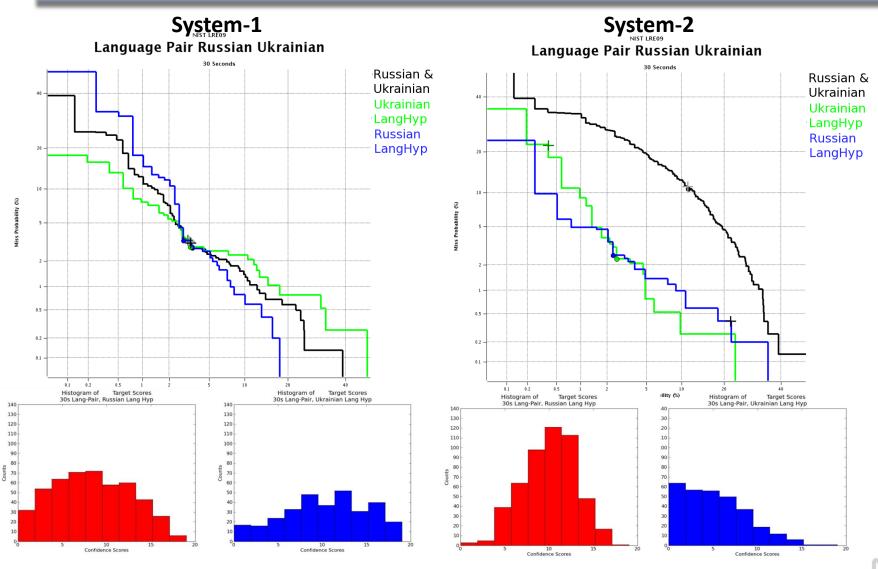
For LRE09, the application parameters will be:

$$C_{Miss} = C_{FA} = 1$$
, and  $P_{Target} = 0.5$ 

## **Average Performance**

$$C_{avg} = \frac{1}{N_{L}} \cdot \sum_{L_{T}} \left\{ \begin{aligned} & C_{\text{Miss}} \cdot P_{\text{Target}} \cdot P_{Miss}(L_{T}) \\ & + \sum_{L_{N}} C_{\text{FA}} \cdot P_{\text{Non-Target}} \cdot P_{FA}(L_{T}, L_{N}) \\ & + C_{\text{FA}} \cdot P_{\text{Out-of-Set}} \cdot P_{FA}(L_{T}, L_{O}) \end{aligned} \right\}$$

where


 $N_L$  is the number of languages in the (closed-set) test  $L_O$  is the Out-of-Set "language"

$$P_{\text{Out-of-Set}} = \begin{cases} 0.0 & \text{for the closed - set condition} \\ 0.2 & \text{for the open - set condition} \end{cases}$$
 and  $P_{\text{Non-Target}} = (1 - P_{\text{Target}} - P_{\text{Out-of-Set}}) / (N_{\text{L}} - 1)$ 

#### **DET Curves**

- In speaker recognition all trials are pooled to create the DET curve
- In language recognition DET's are computed separately for each language pair and then:
  - DET's are averaged across all non-target languages to produce a DET for each target language
  - DET's for all target languages are averaged to produce an overall DET
- The quality of calibration across languages affects the overall multi-target language DET curves
  - This is illustrated dramatically for the language-pair case
    - the DET's for the two single targets should be symmetric
    - these two DET's should have the same EER.
    - but if the scores are not properly calibrated the combined DET will be degraded
    - the next slide shows an example

## Russian-Ukrainian Pair Example



- Evaluation Overview
- Participants
- Overall Evaluation Results
- Performance History
- Performance by Language
- Performance by Data Type
- Summary

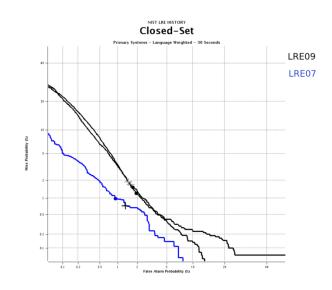
# Participating Sites/Teams (1)

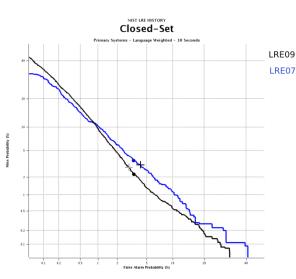
| System<br>Name | Site                                                                   | Location                                            |
|----------------|------------------------------------------------------------------------|-----------------------------------------------------|
| ATVS           | Universidad Autonoma de Madrid                                         | Madrid, Spain                                       |
| BUT-AGN        | Brno University of Technology<br>Agnitio                               | Brno, Czech Republic<br>Somerset West, South Africa |
| CASIA          | Institute of Automation, Chinese<br>Academy of Sciences                | Beijing, China                                      |
| СИНК           | Chinese University of Hong Kong                                        | N.T., Hong Kong                                     |
| EHU            | University of the Basque Country                                       | Bizkaia, Spain                                      |
| IFLY           | iFlyTek Speech Lab, EEIS University of Science and Technology of China | HeFei, AnHui, China                                 |
| IIR            | Institute for Infocomm Research                                        | Singapore                                           |
| IOA            | Institute of Acoustics, Chinese<br>Academy of Sciences                 | Beijing, China                                      |
| L2F            | L2F-Spoken Language Systems Lab<br>INESC-ID Lisboa                     | Lisbon, Portugal                                    |
| LIA            | Laboratorie Informatique D'Avignon                                     | Avignon, France                                     |

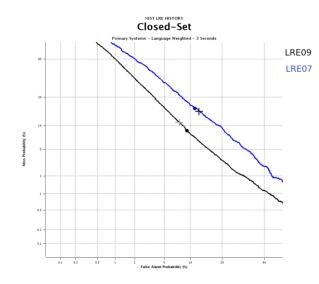
# Participating Sites/Teams (2)

| System<br>Name | Site                                                                                                                                                      | Location                        |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| LIMSI          | CNRS-LIMSI (Laboratoire<br>d'Informatique pour la Mécanique<br>et les Sciences de l'Ingénieur)                                                            | Orsay, France                   |
| LPT            | Loquendo<br>Politecnico di Torino                                                                                                                         | Torino, Italy<br>Torino, Italy  |
| MIT            | MIT Lincoln Laboratory                                                                                                                                    | Lexington, MA, USA              |
| NTUT           | National Taipei University of<br>Technology, Department of<br>Electrical Engineering & Graduate<br>Institute of Computer and<br>Communication Engineering | Taipei, Taiwan                  |
| THU            | Tsinghua University Department of<br>Electrical Engineering                                                                                               | Beijing, China                  |
| TNO            | Nederlandse Organisatie voor<br>Toegepast Natuurwetenschappelijk<br>Onderzoek                                                                             | Soestenberg, The<br>Netherlands |

- Evaluation Overview
- Participants
- Overall Evaluation Results
- Performance History
- Performance by Language
- Performance by Data Type
- Summary


#### **Overall Evaluation Results**


See web page summary:


http://www.itl.nist.gov/iad/mig/tests/lre/2009/lre09\_eval\_results/index.html

- Evaluation Overview
- Participants
- Overall Evaluation Results
- Performance History
- Performance by Language
- Performance by Data Type
- Summary

# Best System - Closed Set 2007, 2009

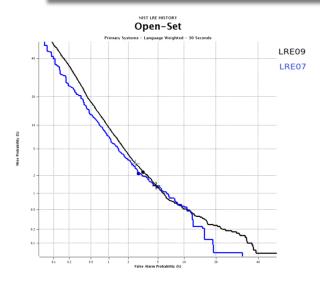




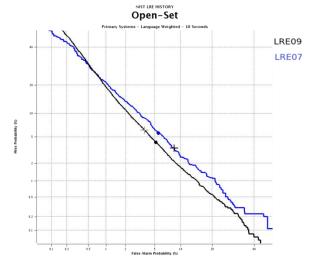


30sec

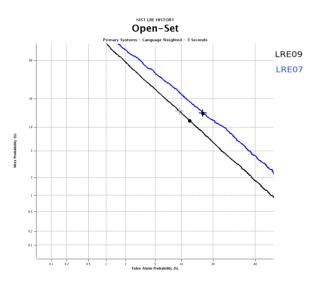
- Co-winners in 30 sec trials
- Performance loss in 30 sec trials compared with LRE07


10sec

3sec


- •3 sec saw better performance compared with LRE07
- •Improved selection of 3 sec segments



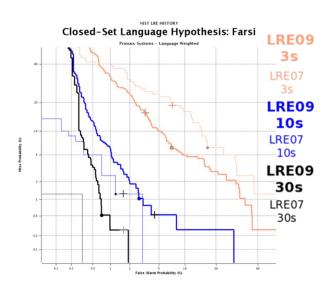

# Best System - Open Set 2007, 2009

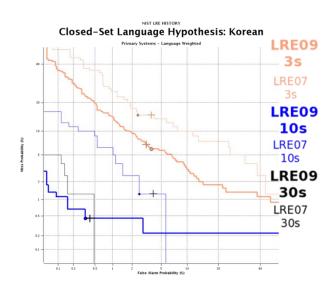


30sec

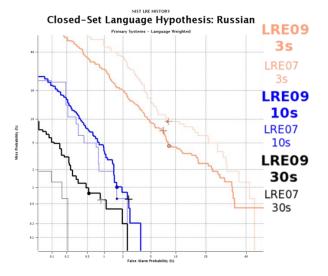


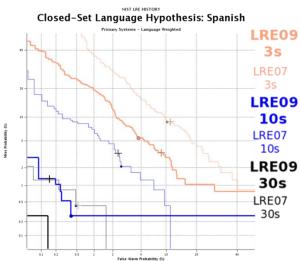
10sec

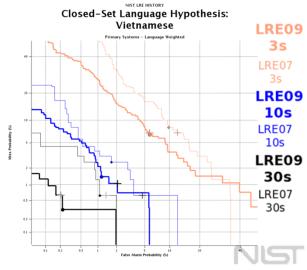




3sec

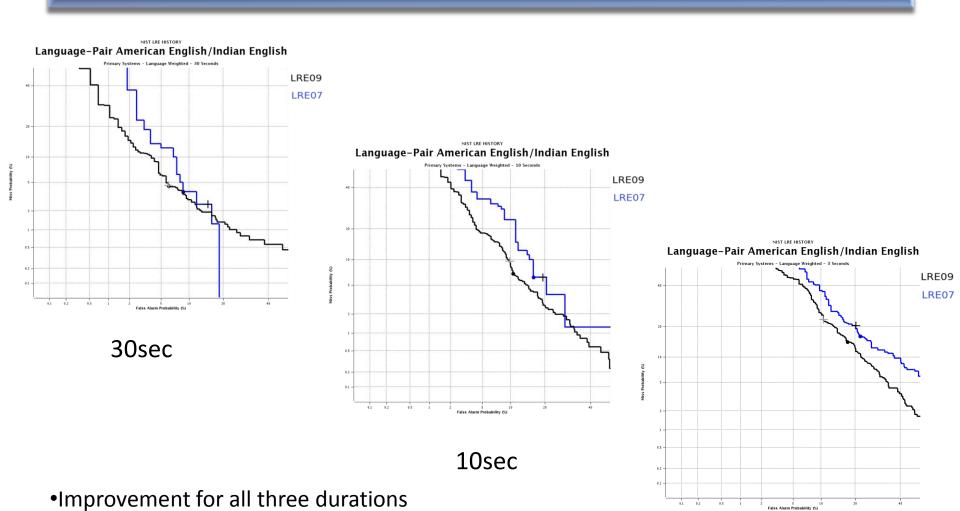



#### **Best Systems by Target Language**


Closed-Set - 2007, 2009

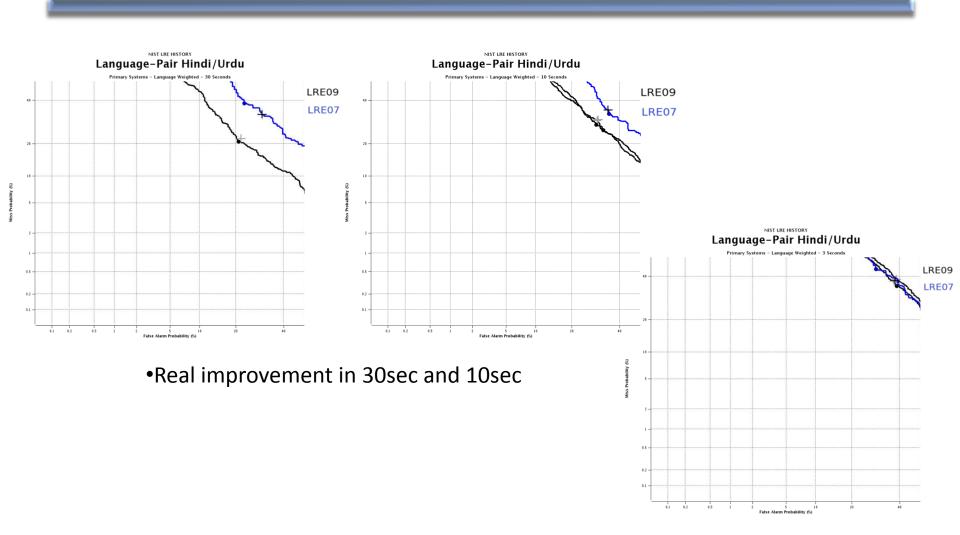






30 sec Korean off chart!





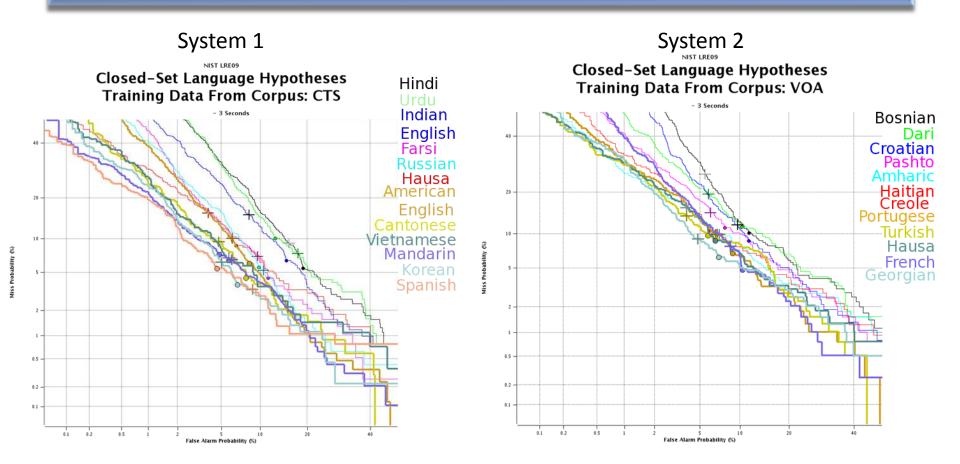



# Best System - Recognizing American English for American English/Indian English Language Pair 2007, 2009



3sec

# Best System - Recognizing Hindi for Hindi/Urdu Pair 2007, 2009

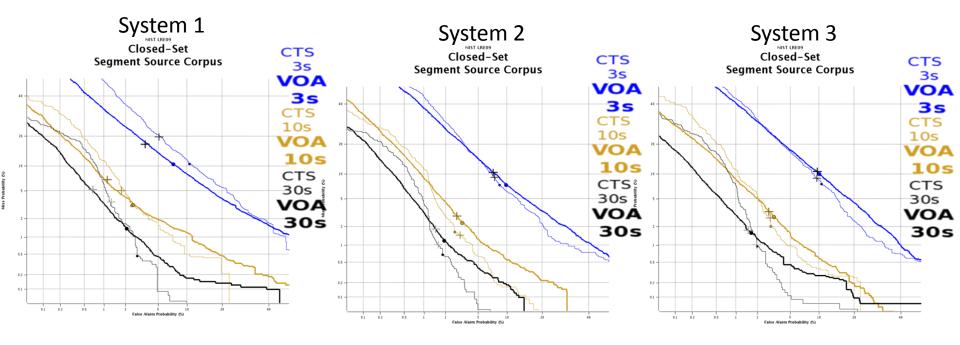



•3 sec still challenging

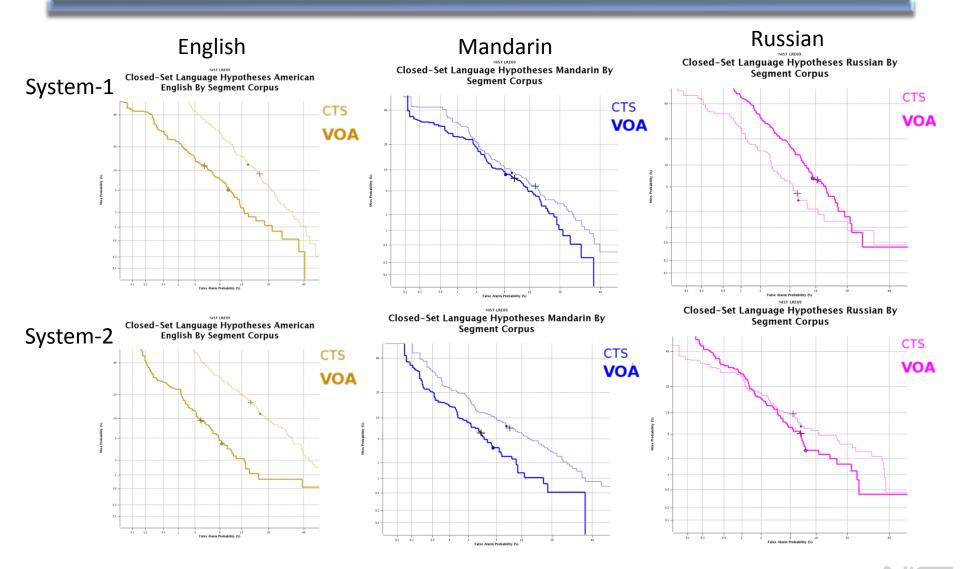


- Evaluation Overview
- Participants
- Overall Evaluation Results
- Performance History
- Performance by Language
- Performance by Data Type
- Summary

#### Closed Set Performance by Target Language




- •Indian languages were challenging
  - •CTS training somewhat better performance


- Evaluation Overview
- Participants
- Overall Evaluation Results
- Performance History
- Performance by Language
- Performance by Data Type
- Summary

#### Closed Set Performance by Data Type

- VOA and CTS performance broadly comparable
- CTS curves less linear, with better performance at high FA rates



# Single Target Language Performance by Data Type (3sec)



## Summary and Issues

- LRE09 was essentially successfully conducted largely utilizing narrowband broadcast speech
  - Performance on VOA was comparable to that with CTS
  - Larger numbers of test segments were included
  - But speakers were often repeated
- Some performance improvement seen compared with LRE07, particularly for shorter duration segments
- Similar (particularly mutually comprehensible) languages present performance (and auditing) challenges
- Some issues with scoring and DET curves
  - Should language pairs be emphasized?
  - Does LRE09 provide a model for future evaluations?